Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessing Tank-to-Wheel Efficiencies of Advanced Technology Vehicles

2003-03-03
2003-01-0412
This paper analyzes four recent major studies carried out by MIT, a GM-led team, Directed Technologies, Inc., and A. D. Little, Inc. to assess advanced technology vehicles. These analyses appear to differ greatly concerning their perception of the energy benefits of advanced technology vehicles, leading to great uncertainties in estimating full-fuel-cycle (or “well-to-wheel”) greenhouse gas (GHG) emission reduction potentials and/or fuel feedstock requirements per mile of service. Advanced vehicles include, but are not limited to, advanced gasoline and diesel internal combustion engine (ICE) vehicles, hybrid electric vehicles (HEVs) with gasoline, diesel, and compressed natural gas (CNG) ICEs, and various kinds of fuel-cell based vehicles (FCVs), such as direct hydrogen FCVs and gasoline or methanol fuel-based FCVs.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Technical Paper

Assessment of the Ignition System Requirement on Diluted Mixture Spark Engines

2020-04-14
2020-01-1116
In order to face the new challenges, spark ignition engines are evolving by following some strategies and technologies. Among them, alternative combustion processes based on the dilution of the homogeneous mixture, either with fresh air or with Exhaust Gas Recirculation (EGR), are being explored. In a higher or lower extent, these changes modify in-cylinder thermodynamic conditions during the engine operation (pressure, temperature and gas composition) thus conditioning the spark ignition system requirements that will have to evolve to become more reliable and powerful. In this framework, an experimental study on the effect of the key in-cylinder conditions on the ignition system performance has been carried out in a single-cylinder spark-ignition (SI) research engine. The study includes EGR, lambda and energizing time sweeps to assess the behavior of the engine in different operating conditions.
Technical Paper

Autonomie Model Validation with Test Data for 2010 Toyota Prius

2012-04-16
2012-01-1040
The Prius - a power-split hybrid electric vehicle from Toyota - has become synonymous with the word “Hybrid.” As of October 2010, two million of these vehicles had been sold worldwide, including one million vehicles purchased in the United States. In 2004, the second generation of the vehicle, the Prius MY04, enhanced the performance of the components with advanced technologies, such as a new magnetic array in the rotors. However, the third generation of the vehicle, the Prius MY10, features a remarkable change of the configuration - an additional reduction gear has been added between the motor and the output of the transmission [1]. In addition, a change in the energy management strategy has been found by analyzing the results of a number of tests performed at Argonne National Laboratory's Advanced Powertrain Research Facility (ARRF).
Technical Paper

Axial Flux Variable Gap Motor: Application in Vehicle Systems

2002-03-04
2002-01-1088
Alternative electric motor geometry with potentially increased efficiency is being considered for hybrid electric vehicle applications. An axial flux motor with a dynamically adjustable air gap (i.e., mechanical field weakening) has been tested, analyzed, and modeled for use in a vehicle simulation tool at Argonne National Laboratory. The advantage of adjusting the flux is that the motor torque-speed characteristics can better match the vehicle load. The challenge in implementing an electric machine with these qualities is to develop a control strategy that takes advantage of the available efficiency improvements without using excessive energy to mechanically adjust the air gap and thus reduce the potential energy savings. Motor efficiency was mapped in terms of speed, torque, supply voltage, and rotor-to-stator air gap.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Technical Paper

Battery Surface Temperature Measurement Correction for an Accelerating Rate Calorimeter with Sapphire Optical Access

2023-08-28
2023-24-0164
Upcoming legislation towards zero carbon emission is pushing the electric vehicle as the main solution to achieve this goal. However, electric vehicles still require further battery development to meet customer’s requirements as fast charge and high energy density. Both demands come with the cost of higher heat dissipation as lithium transport and chemical reaction inside the battery need to be performed faster, increasing the joule effect inside the battery. Due to its working principle, which guarantees an adiabatic environment, an accelerating rate calorimeter is used to study thermal phenomena in batteries like a thermal runaway. However, this equipment is not prepared to work with optical access, which helps to study and to comprehend battery surface distribution and other thermal aspects. This paper aims to show a methodology to correct temperature measurement when using a thermographic camera and optical access of sapphire in an accelerating rate calorimeter.
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Technical Paper

Breaking Down Technology Barriers for Advanced Vehicles: The Graduate Automotive Technology Education (GATE) Program

2000-04-02
2000-01-1595
The U.S. Department of Energy (DOE) Office of Advanced Automotive Technologies (OAAT), in partnership with industry, is developing transportation technologies that will improve the energy efficiency of our transportation system. Most OAAT programs are focused exclusively on technology development. However, the twin goals of developing innovative technologies and transferring them to industry led OAAT to realize the growing need for people trained in non-traditional, emerging technologies. The Graduate Automotive Technology Education (GATE) program combines graduate-level education with technology development and transfer by training a new generation of automotive engineers in critical multi-disciplinary technologies, by fostering cooperative research in those technologies, and by transferring those technologies directly to industrial organizations.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

CFD Modelling of Hydrogen-Fueled SI Engines for Light-Duty Applications

2023-08-28
2023-24-0017
The employment of hydrogen as energy carrier for transportation sector represents a significant challenge for powertrains. Spark-ignition (SI) engines are feasible and low-cost devices to convert the hydrogen chemical energy into mechanical work. However, significant efforts are needed to successfully retrofit the available configurations. The computational fluid dynamics (CFD) modelling represents a useful tool to support experiments, clarifying the impact of the engine characteristics on both the mixture preparation and the combustion development. In this work, a CFD investigation is carried out on typical light-duty SI engine configurations, exploring the two main strategies of hydrogen addition: port fuel injection (PFI) and direct injection (DI). The purpose is to assess the behaviour of widely-used numerical models and methodologies when hydrogen is employed instead of traditional carbon-based fuels.
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

2019-01-15
2019-01-0001
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

CO2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels

2020-06-30
2020-37-0026
Plug-in Hybrid Electric Vehicles (PHEVs) can be considered as the most promising technology to achieve the European CO2 targets together with a moderate infrastructure modification. However, the real benefits, in terms of CO2 emissions, depend on a great extent on the energy source (fuel and electricity mix), user responsibility, and vehicle design. Moreover, the electrification of the powertrain does not reduce other emissions as NOx and particulate matter (mainly soot). In the last years, low temperature combustion (LTC) modes as the reactivity controlled compression ignition (RCCI) have shown to achieve ultra-low NOx and soot emissions simultaneously due to the use of two fuels with different reactivity together with high exhaust gas recirculation (EGR) rates. Therefore, the aim of this work is to assess, through numerical simulations fed with experimental results, the effects of different energy sources on the performance and emissions of a series RCCI PHEV.
Technical Paper

Challenges and Directions of Using Ammonia as an Alternative Fuel for Internal Combustion Engines

2023-04-11
2023-01-0324
In recent decades, the importance of emerging alternative fuels has increased significantly as a solution to the problems of global warming and air pollution from energy production. In this context, ammonia (NH3) is seen as a potential option and energy vector that may be able to overcome the technical challenges associated with the use of other carbon-free fuels such as hydrogen (H2) in internal combustion engines (ICE). In this research, a numerical methodology for evaluating the impact of using ammonia as a fuel for spark-ignition ICEs has been developed. A combination of a single-cylinder and multi-cylinder numerical experiments has been performed to identify the main challenges and determine correct engine configuration. In addition, the performance of the engine has been evaluated through standard homologation driving cycles, contrasting it with other alternative propulsion configurations.
Technical Paper

Challenges in Reforming Gasoline: All Components are Not Created Equal

2001-05-07
2001-01-1915
Gasoline is a complex fuel. Many of the constituents of gasoline that are beneficial for the internal combustion engine (ICE) are expected to be challenging for on-board reformers in fuel-cell vehicles. To address these issues, the autothermal reforming of gasoline and individual components of gasoline has been investigated. The results indicate that aromatic components require higher temperatures and longer contact times to reform than paraffinic components. Napthenic components require higher temperatures to reform, but can be reformed at higher space velocities than paraffinic components. The effects of sulfur are dependent on the catalyst. These results suggest that further evolution of gasoline could reduce the demands on the reformer and provide a better fuel for a fuel-cell vehicle.
Technical Paper

Characterization and Comparison of Two Hybrid Electric Vehicles (HEVs) - Honda Insight and Toyota Prius

2001-03-05
2001-01-1335
Two limited-production hybrid electric vehicles (HEVs) - a 1988 Japanese model Toyota Prius and a 2000 Honda Insight - were tested at Argonne National Laboratory to collect data from vehicle component and systems operation. The test data are used to analyze operation and efficiency and to help validate computer simulation models. Both HEVs have FTP fuel economy greater than 45 miles per gallon and also have attributes very similar to those of conventional gasoline vehicles, even though each HEV has a unique powertrain configuration and operation control strategy. The designs and characteristics of these vehicles are of interest because they represent production technology with all the compromises for production included. This paper will explore both designs, their control strategies, and under what conditions high fuel economy was achieved.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
X